Presented at:

Publ i shed as: Proc. 12th I1EEE Intl.

I Gl P-05, Genoa, Italy, Septenber 11-14, 2005
Conf .
Vol |, pp 949-952, Sep 2005.

I mage Processing
© | EEE Conputer Society

LOCALLY ADAPTIVE MULTISCALE CONTRAST OPTIMIZATION

Nicolas Bonnier and Eero P. Smoncdlli

Center for Neural Science, and Courant Institute for Mathematical Sciences,
New York University, New York, NY 10003
Email: nbonnier@cns.nyu.edu, eero.simoncelli @nyu.edu

ABSTRACT

We describe a method for automatically and adaptively boosting
the visibility of local features in an image. A log intensity im-
age is first decomposed into a set of subbands at multiple scales
and orientations. Operating successively from coarse frequency
bands to fine, the coefficients of each subband are adjusted so as to
move their locally averaged amplitudes toward a target value using
a gamma operation. Target values are chosen to fall linearly over
scale, consistent with a scale-invariant spectral model. To avoid
enlarging the range of image intensity values, in those locations
where the local mean is near the minimal or maximal values of the
image and the local contrast is being boosted significantly, the lo-
cal mean is moved toward the global mean. Finally, a spatial mask
is applied in the pixel domain to ensure that the enhancements are
applied only in the vicinity of image features. The resulting image
appears to be both sharper and of higher contrast.

I ntroduction

Essentially all devices used for capture or reproduction of visual
images are incapable of representing the full range of intensities
found in the visual world. Engineered devices often handle this
problem by compressing or truncating the intensity range. For ex-
ample, the process of film exposure, development and printing re-
produces light intensities according to a sigmoidal function that
compresses the contrast of low and high intensity values. Other
such “tone-mapping” solutions include clipping, linear re-mapping,
gamma (exponential) corrections, and histogram equalization. Dur-
ing any such process, regions of the scene that are contrast-reduced
(i.e., where the slope of the mapping function is low) can become
difficult or impossible to see. Professional photographers have
learned to compensate for these problems in the darkroom, by se-
lectively “dodging” or “burning” local image regions where the
loss of contrast would be detrimental to the desired appearance.

The human visual system also uses sensors with limited re-
sponse range. It does perform global adjustments to adjust the
intensity range (for example, by adjusting the size of the iris). Per-
haps more importantly, it uses spatially adaptive processing such
as local gain control in order to “see” details in all locations within
the image. Although these adaptive biological processes are not
yet fully understood, it is clear that digital image processing offers
the flexibility to implement such solutions and a variety of meth-
ods have begun to take advantage of such principles [e.g., 1-5].

In this paper, we describe a methodology for adaptively ad-
justing contrast within a digital image, without introducing visi-

ble artifacts or expanding the overall image intensity range. The
image is decomposed into multiple frequency bands, and the co-
efficients in each band are modified using a nonlinear “gamma”
operation that moves their local average magnitude toward a target
value. Target values for each band are chosen to fall with with a
slope of —2/octave, consistent with aa 1/ f2 spectral model. The
method can be applied to a conventional digital image, in order
to enhance the visibility of features that might otherwise be lost
when displayed. It is also relevant for processing of high-dynamic
range (HDR) images, in order to render them more visibly on a
low-dynamic range display.

Preprocessing

We start by preprocessing the image pixel values so that they rep-
resent log light intensities. This kind of processing roughly mimics
the transformation achieved by the retina, and has been studied by
a number of authors (see [6] for review). The test images used to
demonstrate the method are shown in Fig. 1.

A number of authors have advocated the use of multiscale rep-
resentations for contrast adjustment [e.g., 2,3,7,8]. We decompose
our images using the steerable pyramid, a multiscale subband rep-
resentation whose basis functions are derivatives of a radial blur-
ring function [9]. For this paper, we use the complex-valued ver-
sion of this decomposition, as described in [10], with two orienta-
tion bands (vertical and horizontal).

The enhancement method is implemented in a coarse-to-fine
iterative fashion. For each step, we operate on a subband, as well
as the lowpass residual that is obtained by reconstructing all sub-
bands at lower frequencies. The coefficients of this lowpass resid-
ual band represent the local mean of the image, and the coefficients
of the subband represent the variations around this mean. The en-
hancement procedure is a combination of three basic operations,
which are described in the following sections.

| Equalization of local contrast

Perhaps the simplest means of enhancing contrast is to linearly
boost high frequencies (known as “unsharp masking” in the pho-
tographic literature). Within a multi-scale pyramid, this can be
accomplished by multiplying the coefficients in each subband by a
scalar whose value is larger for higher-frequency bands. Although
appealing for its simplicity, this solution is not satisfactory because
high contrast and low contrast features are boosted equally. In gen-
eral, contrast varies widely across a typical image, and the primary
goal of our method is to reduce this variation by boosting contrast



Fig. 1. Test images. Left: horizontal horizontal slice of a test image consisting of vertical step edges. Right: photographic image,

taken from a 12-bit digital Canon 10D camera.

in those regions where it is low or moderate, while leaving it un-
changed in regions where it is high.

We use a nonlinear operation to boost contrast selectively. For
each subband, a local contrast measure is extracted, based on the
average local magnitude of the subband coefficients:

c(z,y) = /g * 0> }(=, ), @

where g is a blurring filter (Gaussian, with standard deviation of
five samples), and b represents the complex subband coefficients.
Note that perceptually, contrast is usually defined as ratio of signal
variation to signal mean [4,7,11]. Here we use only the signal
strength, because the initial log-domain representation has already
implicitly taken the mean into account.

To reduce the variation in contrast across the image, each co-
efficient is boosted according to the strength of the local contrast
signal:

V' (z,y) = m(z,y)b(z,y),
where b(z, y) is the original coefficient, b’ (x, y) the updated coef-
ficient, and

(v=1)
i) = |00 1 @

The parameter v € [0, 1) determines the strength of the effect
(small gamma produces a large effect, and =1 produces no ef-
fect), and the parameter ¢ (set to a value of 0.01 in our experi-
ments) prevents amplification of noise in low-signal areas. The
contrast target, t., represents the contrast level toward which ¢ is
moved, and is described below.

This type of “gamma” adjustment is widely used in the inten-
sity domain to compensate for the nonlinearities of devices such
as cathode ray tubes. The particular version used here will push all
contrasts toward the target contrast, producing a proportionately
larger change in those values that are far from the target than in
those that are near. Rewritten in the log domain, this adjustment
corresponds to a weighted average of the original contrast and the
target contrast, with the weight determined by ~. A related gamma
adjustment was developed in [3] for rendering HDR images.

A simple choice of target contrast ¢.. is the global maximum of
the contrast of the subband. Alternatively, one can simultaneously
choose t. across all bands of the pyramid, so as to achieve a par-
ticular spectral shape. Since the Fourier spectra of natural images
have been shown by many authors to follow a power law (see [6]
for review), with an exponent of roughly —2, we choose a set of
target contrasts that fall at this rate with scale.

Figure 2 shows the results of this enhancement procedure, ap-
plied to a test image containing step edges, as well as a 12-bit
linearized digital camera image. Note the substantial increase in
apparent contrast at edges and in detail regions, as well as the ap-
pearance of edge (“ringing” and “halo”) artifacts.

I1: Compensatory adjustment of local mean

In regions of very low or high intensity, the amplification of sub-
band coefficients can lead to an expansion in the total pixel in-
tensity range. Those extremal values then need to be clipped, thus
partly eliminating the effect of the contrast enhancement. Clipping
can be avoided by globally adjusting (tone-mapping) the pixel val-
ues, but tends to lower the global contrast.

Our solution for this problem is again adaptive. For those lo-
cations undergoing substantial boosting and having very low (or
high) local mean, we adjust the lowpass signal, moving it toward
the global mean:

ll($7 y) = l(l’, y)
+  hx [maxay [I(z,y) + c(@,y)] — ((z,y) + ¢ (z,9))]
+  hox [mingy [z, y) — c(z,y)] = ((=z,y) = ' (2,9))]

where ¢’ (x,y) is the contrast of the modified coefficients (com-
puted by applying Eq. (1) to b’(z,y)), |-] indicates the positive
part and [-] indicates the negative part, and A is is a blurring filter
(Gaussian, with standard deviation of two samples). The result of
this operation is shown in Fig. 3. Note the increased contrast of
details in the shadow region on the left side of the photographic
image.



Fig. 2. Enhancement results computed by applying a “gamma” adjustment (v = 0.5) to the contrast of each subband of a two-
orientation steerable pyramid. Original test images are shown in Fig. 1.

It is interesting to consider this adjustment in the case when
c(z,y) is constant. Under these homogeneous contrast condi-
tions, m(z,y) is constant, and the lowpass adjustment depends
only on the values of the lowpass coefficients themselves. The re-
sulting function is approximately a sigmoidal nonlinearity, as is
commonly used to compress overall dynamic range in film pho-
tography.

[11: Spatial masking of features

The two concepts described above generate a desirable increase
in apparent local contrast in the image. We find, however, that
an equal modification of energy on two coefficients with identical
values in different parts of the image is not perceived as equal if
the surrounding of these coefficient is different. This is a “mask-
ing” effect and it suggests that we should adapt the modification of
a given coefficient according to its spatial surroundings. In addi-
tion, we also find that the method produces ringing or halo artifacts
near strong edges, especially if they are adjacent to flat regions
(see Figs. 2 and 3). This is due to the extent of the spatial filters
used in the pyramid decomposition, and to the fact that each of the
coefficients that contribute to the representation of these edges are
being boosted differently. Recent work on display of high dynamic
range images eliminates such artifacts using robust nonlinear fil-
ters to generate lowpass bands [8, 12]. Here, we prefer to develop
a solution that operates on the linear pyramid representation.

Both the masking and halo problems can be overcome by spa-
tially masking the enhancements so that they are applied primarily
in the immediate vicinity of image features. Specifically, we com-
pute a “feature mask” by taking the mean of the log contrast across
all pyramid bands at each spatial location.

Fl,y) = loga (cx(x,y)).
k

This mask is normalized to have a maximum value of one. Finally,
the result image is computed by taking an average of the original
image and the enhanced pyramid image, weighted by this feature
mask:

7"(33, y) = f(.’r,y)[l(ilj’, y) + [1 - f(a:,y)]f(a:, y)»

where I’ (x,y) is the enhanced image that is derived from the re-
constructed pyramid, and I(z, y) is the original image. The result
of the full algorithm is shown on the two example in figure 4.

Conclusion

We have described a simple multiscale algorithm to enhance the
visibility of local features in an image. The method is based on a
gamma-like correction to the amplitudes of coefficients in a mul-
tiscale decomposition, similar to that proposed by several other
authors [3,4]. In addition, we adjust the local mean (lowpass
residual) in those locations where it is extremal and the changes
to the subband coefficients would lead to pixel values exceeding
the original range. Finally, we apply the changes only in regions
associated with significant local contrast. We’ve demonstrated the
behavior of the method on two example images, and although it
appears promising, a much more extensive set of tests on a wide
variety of images is needed for proper validation.

We envision a number of improvements and extensions to this
approach. The development of the algorithm in terms of three
distinct operations is conceptually convenient, but it is difficult to
guarantee that these operations will behave compatibly across all
images. We believe it should be possible to combine the adjust-
ments into a single unified operation. It would also be desirable
to set the parameters (e.g., ) automatically, based on the input
image, in such a way that the algorithm becomes idempotent (i.e.,
an image that has already been enhanced is unaffected if the algo-
rithm is applied again). Finally, we see contrast enhancement as a
portion of a more general framework for automatic improvement
of image quality, with a full solution potentially handling sharpen-
ing, denoising, and color balance.
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